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Abstract. The electronic states responsible for transport constitute a wildly fluctuating 
minority of the total number of states in a disordered system. These fluctuations are the 
essence of the problem and demand a rich and powerful formulation if they are to be 
described accurately. In this paper we introduce a new formalism for treating transport in 
three-dimensional systems based on the transfer matrix. The method gains its power from 
the interplay of theory of the symmetric group, which enables irrelevant parts of the math- 
ematics to be thrown out, leaving the essentials intact but simplified. Analogies with replica 
theory are drawn, and replica symmetry breaking discussed. 

1. Introduction 

It is the aim of this paper to introduce a formalism for the systematic study of transport 
properties of disordered systems, using a transfer matrix formulation. 

Electronic properties of ordered systems are understood in exhaustive detail. Not 
only can we understand all the structure and singularities in the densities of states, but 
also the quantitative study of ordered solids is on a sound footing: spectroscopic studies 
can be interpreted, and densities of states can be used to calculate total energies and 
to predict structural arrangement of atoms. All this immense progress is due to the 
application of group theory in the form of Bloch’s theorem, which offers us a complete 
classification of the electronic states. 

If we study electronic transport, that is to say the conductivity of a solid, then either 
the solid is ordered and the problem is trivial (ordered solids have no electrical resistivity) 
or the solid disordered, group theory goes out of the window and the theory becomes 
an unclassified mess. In this paper we show that group theory is still able to help even in 
the case of disorder, and that a systemic non-perturbative formulation of the problem 
can be made in terms of ageneralisation of the transfer matrices that are used to calculate 
the band structure of ordered solids. 

That is not to deny that progress has been made with the problem. Weakly disordered 
systems have been investigated by perturbation theory, revealing structure not suspected 
before in the form of the mesoscopic fluctuations (Stone 1985, Imry 1986). Strong 
disorder can be addressed by scaling theory (Abrahams et a1 1979) to investigate the 
nature of the singularity in conductivity at the mobility edge; or by renormalisation- 
group techniques (Wegner 1979). Yet another approach has been the application of 
random matrix theory (Muttalib et a1 1987, Mello 1988, Zanon and Pichard 1988). 
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Powerful and imaginative as these approaches have been, they all demand a physical 
input in the form of postulates as to the nature of the solution. It is clear from numerical 
simulations that the rich structure induced in the electron wavefield by disorder goes far 
beyond what we have been able to classify to date: much remains to be understood. For 
example, scaling theory suggests that near amobility edge at E, the conductancevanishes 
linearly as 

G = const(E - E,). 

Yet numerical simulations (MacKinnon and Kramer 1983, Schreiber and Kramer 1989) 
have so far failed to confirm this result. The whole source of the complication is the 
nature of fluctuations in the wavefield, which obey an extreme form of statistics and 
actually get more extreme as the system gets larger. In the case of the conductance in 
one dimension the current is carried by classes of states that form a vanishing minority 
of the total number of states (Pendry 1987). Worse still, there is not just one class, but 
a whole set of them, and which is most effective depends on the circumstances. 

Mathematically this is reflected in the fact that a quite different formulation has to 
be made of the conductivity problem from the one used in calculating density of states; 
see Kirkman and Pendry (1984a, b) for an explicit demonstration in the ID case. Transfer 
matrices have found extensive application to ID problems (Landauer 1957,1970, Erdos 
and Herndon 1982, Pendry 1982) and more recently have been generalised to handle 
questions concerning correlations in the conductivity of ID systems. 

The idea of a transfer matrix is a simple one; the system is divided into subunits, 
individual atoms for a ID systems, planes of atoms for a 3D system. The transfer matrix 
T, for the nth subunit is a function of the elementary properties of the subunit, namely 
the reflection and transmission coefficients, r, and t,, i.e. 

All transfer matrices obey the fundamental theorem, which states that we can construct 
the transfer matrix for a whole set of L subunits by multiplying together the individual 
transfer matrices in the correct order, i.e. 

L 

TL = rI T, 
, = l  

where TL is the same function of the reflection and transmission coefficients of the 
complete unit, 

They have one great and overriding virtue, which is that they can be averaged very easily 
provided that the subunits are statistically independent, 

L 

T L  = n 7,. (4) 
f l= l  

There are many other formalisms that give expressions for transmission and reflection, 
but none exhibits the same simplicity of the averaging process. Why, then, have transfer 
matrices not solved every question of transport in disordered systems? Because not all 
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<- + a k  exp(iK-’ . r )  I- > + a k r i l  exp(iK+ ’ * r )  

a k t i k  exp(iK+ - r) <- 

Figure 1. A layer of atoms has scattering properties given by transmission and reflection 
matrices describing how waves incident from the left or the right scatter into a set of reflected 
and transmitted beams. Lower-case k is used to label the component of wavevector parallel 
to the layer, whereas capitalK’ includes a component normal to the layer with sign appro- 
priate to the direction of the wave. 

quantities of interest are easily expressed in terms of transfer matrices. The interest in 
knowing the average of l / t L  is decidedly limited. 

Progress was made when it was discovered that transfer matrices could be generalised 
through the direct products of the elementary T, (Pendry 1982). Application of the ideas 
of the symmetric group enabled questions such as ‘What is the average of ltI2?’ to be 
formulated in terms of a transfer matrix. These ideas have solved the problem of finding 
the distribution of (t i2 for arbitrarily large disorder in ID systems Kirkman and Pendry 
1984a, b). 

The method of treatment in ID does not generalise in a trivial way to higher dimen- 
sions; for one thing the transmission and reflection coefficients become non-commuting 
matrices. Part of the problem was addressed in an earlier paper where we showed how 
to calculate the density of states in a 2D or 3D disordered system. In this paper we extend 
the formalism to the transmission and reflection coefficients themselves and hence to 
the conductivity. First, we shall give the general form of higher-dimensional transfer 
matrices and a few theorems about them. Then the generalised form of the transfer 
matrix and its symmetrisation is introduced. Next it is shown how transmission and 
reflection matrices can be extracted from this generalised form, and some general 
properties are discussed. 

2. Transfer matrices in higher dimensions 

The elementary transfer matrix is easily obtained by arguments similar to the ID case. 
Consider a layer of atoms; figure 1 defines the transmission and reflection properties. 
The different beams are distinguished by their momentum parallel to the layer, k = 
(k,, ky) ,  which together with the energy defines the momentum normal to the layer, tK,. 
Thus the complete wavevector is 

K’ = ( k , ,  k , ,  t K , ) .  ( 5 )  

We assume that the z component of the wavevector is always real. This simplifies the 
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n n + l  

> a i k  - 

a;k <- 

Figure 2. Wave amplitudes around two layers are shown. The self-consistent scattering 
equations can be used to construct a transfer matrix. 

notation, which would otherwise need to distinguish between real and imaginary K, .  
The generalisation is straightforward but tedious. 

Another important point in defining transmission and reflection matrices is the choice 
of origin with respect to which the incident and reflected waves are referred. One natural 
choice is the centre of the scattering layer, but this is not the choice we make here. 
Instead, different origins are chosen for the waves on the left and right. This choice has 
the virtue that when several layers are being stacked together we can choose the same 
origin for waves in between layers 1 and 2. Otherwise our formulae would need to 
contain a clumsy shift of origin when waves emerging from layer 1 subsequently scatter 
from layer 2. 

The 2~ case can be deduced by a trivial specialisation of the formulae. 
It is easy to show that these matrices possess some symmetries due to current 

conservation: 

where V ,  is the z-component of the group velocity of the kth wave. Note that each of 
the pairs of matrix products on the left-hand side must commute. 

Time reversal gives some more symmetry: 

and 

We are now in a position to define the transfer matrix. Figure 2 shows waves incident on 
the nth layer. 
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The transmission and reflection matrices give us two equations for the amplitudes: 

a , ' + l , k  = tk+kta;k,  + r,&an+l,k' (9a) 

aik = r,&ta;k' + t i k T a , + l , k f .  (9b) 

k' 

k' 

These two equations can be written as a single composite matrix equation of twice the 
size. i.e. 

Inverting this matrix gives 

where the transfer matrix is defined by 

Making use of the time-reversal symmetry given in equations (7) and (8), 

( t - - *  j : i T k ,  = tLkt - zrrk+K;(t--);b,,ri'tk, 
K'K" 

the transfer matrix can be re-expressed as 

We have dropped the superscripts on t and r since they are now redundant. 

3. The story so far 

In an earlier paper (Pendry and Castano 1988) several important results were derived, 
which we shall need. In this section we state these results without proof. The reader is 
referred to the original paper for details, and to Hammermesh (1962) or Littlewood 
(1950) for proofs of the group-theoretical results. 
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In that paper we showed how det(t)-' could be expressed in terms of a transfer 
matrix. We can write the determinant of an arbitrary matrix A, dimension d, as 

2 ar/k All' Ur ' l 'k '  = d e t A  

X 

A, 
X 

A kk 

d terms 

 where^,]^, , , is the antisymmetricunit tensor. Obviously this has the formof asymmetrised 
directproduct, (ad /A@d/ad).  The projection we use on this occasion is completely anti- 
symmetric in all the subscripts. We could use this method to calculate det(t)-' simply by 
choosing A = ( t ) - ' .  

Consider the dth-order direct product of the transfer matrix, T@d. We can symmetrise 
this direct product in the manner discussed in our earlier papers, and in particular we 
can choose the completely antisymmetric projection corresponding to the Young's 
tableau 

d boxes. i 
U 

Since the dimensions of T are 2d, there is a choice of rows and coiumns with respect to 
which we antisymmetrise. The complete set of choices constitute a matrix, Y, which is 
itself a transfer matrix obeying the fundamental theorem 

L 

YL = n Y,. 
,= 1 

We shall define the top left-hand element of Y to correspond to the choice of the first d 
rows and the first d columns, 

Y L1l = det(t t)- ' .  (18) 

For solid-state physicists there is a helpful analogy that can be drawn between the Y 
matrix and a system of fermions in a half-filled band. If we suppose that the first d rows 
or columns of T correspond to the 'lowest-energy' states, and the last d to the 'highest- 
energy' states, then the 'ground state' of the system is given by an antisymmetrised 
product of the first d states. The other elements correspond to 'excited states' of the 
system. For example, we might choose to antisymmetrise on (d  - 1) states chose from 
the first set of dandonechosenfrom thesecondset ofd. Obviouslythere aredpossibilities 
for each choice, giving a total of d2 different singleexcitations. The next most complicated 
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choice is ( d  - 2) from the first d and two from the second d ,  and so on. The dimensions 
of Y are 

D = (2d>!/(d!)' (19) 
corresponding to the number of ways of choosing d objects from a set of 2d. 

In the earlier paper we were concerned with the density of states, which is given by 

Im log det(t)-l = Im lim detN(t)-'/N. (20) 
N-, 0 

Hence we showed how to construct a transfer matrix for the Nth power of det. This 
matrix will also be relevant to the transport properties of the systems as we shall show 
in a subsequent section. 

The Nth power of det(t*)-' is contained within the Nth-order direct product of Y. In 
fact it is contained within the completely symmetric subspace of this direct product, 
which we obtain in the following manner. The completely symmetric space is labelled 
by a set of occupation numbers {n,}, describing the number of times subscript i occurs in 
this element. The {ni} obey the sum rule 

n, = N. (21) 
The number of distinct permutations of the N subscripts is 

I 

N ! / n  ni!  

which is a normalising factor for the symmetrised basis set. We can now write the 
completely symmetric reduction of Y@" as 

where the product over ii' is over all D2 values of these subscripts, and the summation 
over Pii, is over all possible positive integer values of the P subject to the restrictions that 
they be compatible with the subscripts of X .  For example, if D = 6 then the table of P 
would satisfy two-way sum rules: 

p12 p13 p14 p l S  p16 = nl 

p21 p22 p23 p24 p2S p26 = n2 

p31 p 3 2  P 3 3  P34 P ~ s  p 3 6  = n3 

p41 p 4 2  P 4 3  P M  P ~ s  p 4 6  = n4 

pS1 pS2 pS3 pS4 p S S  pS6 = nS 

p61 p62 p63 P M  p 6 S  P66=n6 

II II II II II II II 
ni n; ni n; n; nk =N.  

The quantities we wish to calculate can be expressed in terms of the X matrix defined 
in (23).  We have already generalised the transfer matrix T to obtain the Y matrix. We 
now go one step further and make a second generalisation by using Y to construct X .  
Since X is another transfer matrix, we can multiply together the X matrices from 
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old matrix 

successive slices of the disordered material in exactly the way that the original T matrices 
themselves multiply together. Thus equation (26) shows how to construct the composite 
transfer matrix for a slab of L layers, and correspondingly for X :  

0 

L 

X L = n x : =  
n = l  

Note that the (1, 1) matrix element is the quantity that we seek in this instance. Therefore 
we can calculate the average by the usual transfer matrix methods: 

The top right-hand corner is filled with zeros for integer N because these elements 
correspond to new elements with negative n ;  but positive integer nl .  Thus in (23) none 
of the factorials in the numerator is infinite, but at least one of the factorials in the 
denominator must be so. This ensures that we get the same answers as before for integer 
N ,  but have smoothly continued the expression to all values of N .  The corresponding 
terms in the bottom left-hand quadrant are not zero because the normalisation factor 
also contains factorials that cancel with the P ! .  

4. A transfer matrix for the reflection coefficient 

It will make our task a little clearer if we introduce some further notation at this stage. 
It has been explained how the matrix Y consists of all the determinants of order d that 
can be formed from the 2d X 2d matrix T. Let the convention be that subscript '0' 
corresponds to choosing the first d rows of T. In the next class of choice we have (d  - 1) 
terms from the first d rows and one from the last d rows. We label this by the k-value 
omitted from the first set, kl, and the k-value chosen from the second set, k2. Similarly 
in the class consisting of ( d  - 2) terms from the first d rows and two from the last d rows, 
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- - 
YN(0; 0) NYN-yO; O)Y(O; k ; ,  k ; )  . . .  

YN-1(0;0)Y(k1,k2;O) YN-l(O;o)Y(k1,k2;k;,k;) 
+ ( N - l ) Y N - 2 ( 0 ; O ) Y ( O ; k l , k 2 ) Y ( k l , k 2 ; O )  . . . 

. . .  . . .  * . .  
L - (31) 

we label using the two k-values missing from the first set, klk2, and the two chosen from 
the second set, k3k4. In this notation Y appears as 

(28) 
. . .  
. . .  ::I I . . .  * . .  

Y(0; 0 )  

YPl, k2 ; 0 )  

Y(0; k ;  9 k ; )  

Y(kl> k2 ; k;  , k; 

Y(klk2, k3k4; 0 )  Y(klk2, k3k4; k i k ; ,  k ; k i )  . . . . 
. . .  . . .  

Some insight into the nature of these matrices can be had by considering the zero- 
disorder limit, and using a basis set of Bloch waves. Then T becomes 

T =  

and 

Y =  
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deleting the kth row and k; th column of (t*)-' and multiplying by the appropriate sign. 
Similarly the prescription for calculating Y(0; k; , k;) is to substitute the kith column of 
the top right-hand block of T for the k; th column of the top left-hand block. In other 
words, 

Note that the same cofactor applies in each case. Substituting from (33) for the part in 
square brackets gives 

Y(0; k;, ki) = det(t*)-'r?k;-k; (35) 

and therefore 

which is the result we seek. 
We have succeeded in identifying the reflection matrix as a component of the 

generalised transfer matrix XN, in the limit N +  0. This is our main result. 
The reflection matrix appears in a somewhat unexpected form: its elements are not 

in fact to be found in a d X d block of X N ,  but strung out as a vector in a 1 x d 2  block. 
One final step is required to make contact with the transport formalism: we must 

take the direct product X N  @ XGf. This yields a matrix, the first few elements of which 
are 

XN@x;'= 

To complete our prescription we need to find the left and right eigenvalues of the 
averaged XN @ X Gr for a single layer, 

X N  @ X$ I uri) = ei I urj> 

<uzj I X N  @ X$ = ej<uZj 1 
(38a) 

(38b) 
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then work up to a stack of L layers by raising the eigenvalues to the Lth power, and 
finally projecting out the components we need: 

where an obvious notation has been used for the projection operators. Of course, if we 
are to study transport, we need the transmitted intensity, but this can easily be found 
from the current conservation requirement discussed in section 2: 

5. An alternative strategy for the transmission matrix 

A more straightforward strategy would be to find a generalised transfer matrix that 
contains the transmission matrix itself. It is not hard to show that such a matrix exists, 
but there are some formidable group-theoretical difficulties involved in calculating its 
elements, which we have not completely overcome. It would be worthwhile to set out 
the problems so that others more skilled in group-theoretical techniques may make 
progress. 

Consider once again the generalised transfer matrix based on dth-order deter- 
minants, Y. We have outlined a strategy for extracting 

from the Nth-order direct product YBN.  We did this by using theory of the symmetric 
group to reduce the direct product. However, our reduction procedure is incomplete 
and does not correspond to an irreducible representation. 

Consider the Young tableau with d rows and N columns, where d and N are integer 
for the moment. 

d rows, N columns. 

It defines an irreducible representation of the symmetric group. Let us use it to reduce 
the Ndth-order direct product of the transfer matrix with itself, TBNd, to obtain the 
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completely reduced matrix 2, which is another transfer matrix. The elements of 2 are 
defined by the filling of the tableau with subscripts of T, and one such allowed filling is 

d rows, Ncolumns. (43) 

Let us label this the first element. Then it is easy to show that 

Z l l  = detN(t*)-’. (44) 

To be of use to us it is necessary that this expression be analytically continued to fractional 
and negative values of N. Unfortunately, the reduction procedure is complex and not 
sufficiently transparent for us to see how to make this continuation. Others may have 
more insight. 

Let us proceed on the assumption that this problem can in principle be solved. Next 
consider a tableau with (d  - 1) rows and one column: 

It defines another irr;ducible representation of the symmetric group. Let us use it to 
reduce the (d - 1)th-order direct product of the transfer matrix with itself, T@(d-lj, to 
obtain the completely reduced matrix A, which is yet another transfer matrix. One 
possible filling of the tableau is a selection of subscripts drawn from the first d of T. Label 
this filling by the element that is missing. There are thus d possible ways of filling the 
tableau with this selection. The (kk’)  element of the reduced matrix is given by the 
determinant obtained by omitting the kth row and k’th column of ( t*) - ’ ,  which is related 
to the inverse of (t*)-l by 

where S is a factor that is tl according to whether the sum of the row and column 
positions in the matrix is odd or even: see the standard expression for a matrix inverse. 

Next consider the product 

Then all we need to do is to set N = - 1 and we have the desired expression fort. In fact, 
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the product of the elements can again be written as a symmetry-reduced direct product. 
Consider the non-rectangular tableau: 

N columns of length d ,  

one column of length ( d  - 1). 

(48) 

N columns of length d ,  

one column of length ( d  - 1). 

The last column contains all but one of the first d subscripts of T so that the tableau 
defines a set of symmetry-reduced matrix elements, which are in fact 

tzkfS(kk’)  det(t*)-N+l.  

The problem remaining, which we have not yet solved, is to find a sufficiently transparent 
formula for these elements that they can be analytically continued to fractional and 
negtive N ,  in particular to N = - 1. That would give us our explicit formula for t* in 
terms of a transfer matrix. 

However, this question is not an urgent one because we do have a transfer matrix, 
defined in the last section, which can be used to calculate averaged transmitted inten- 
sities. 

6. Replicas and symmetry breaking 

The analogy of the N - .  0 limit taken in equations (32) and (36) to the replica trick in 
spin-glass theory (Edwards and Anderson 1975) has sometimes been drawn: each matrix 
in the direct product represents a replica, and the disorder introduces an interaction 
between replicas. In the original version of the replica method, because all the replicas 
have the same status, it was assumed that the equations would be symmetric in the 
replicas. The demonstration of symmetry breaking was one of the subtleties of the spin- 
glass problem (Parisi 1979,1980). Hence it is natural to ask whether symmetry breaking 
troubles us here. 

Fortunately we have addressed the problem of symmetry from the beginning, in 
many cases decomposing the direct products into irreducible representations of the 
symmetric group. Therefore we can address the problem of replica symmetry directly. 
In the previous section we saw that all questions concerning the transmitted amplitude 
involve a single replica symmetry given by the tableau in equation (48). The solutions 
have no choice but to take the symmetry defined by this tableau. Only in ID does this 
amount to the solution being ‘replica symmetric’, because there the tableau reduces to 
a single row corresponding to Bose symmetry of the replicas. 

For the transmitted intensity used in calculating the conductance, a more complex 
situation develops because then we must take the direct product of two amplitude 
matrices: see, for example, equation (37). Group theory tellsus that the product contains 
a number of irreducible representations, and which of them dominates depends on the 
relative magnitude of the eigenvalues. In ID we have made a complete analysis of 
symmetry breaking for the conductance problem (Kirkman and Pendry 1984b), though 
the language used was that of group theory, not of replica theory. The conclusion is a 
rather radical and interesting one: the conductance is dominated by replicas of symmetry 
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corresponding to the permutation of 
N =  - $ + i a  (49) 

particles, and their contribution is proportional to 

exp[-S”L,(f + a’)] (50) 

where 6” is a measure of the disorder, and L, is the length of the ID system. In 3~ we do 
not have as yet so complete a solution of replica symmetry breaking for the conductance. 

7. Conclusions 

In this paper we have extended the transfer matrix formalism to the calculation of 
conductivity in 3~ systems. The key element in our theory was application of group- 
theoretical techniques to symmetry reduction of direct products. The formula we obtain 
has the same status as the secular determinant in the band structure of solids: it is not a 
perturbative formulation, but approximations need to be made in terms of truncation 
of infinite matrices to finite dimensions. This procedure has already been investigated 
for the case of density-of-states calculations and accurate results found for low-order 
truncations. 

Our result represents a completely new formulation of transport properties and in 
future papers we shall apply it to a variety of systems. 
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